欢迎登录材料期刊网

材料期刊网

高级检索

  • 论文(2)
  • 图书()
  • 专利()
  • 新闻()

Effect of Doping and High-Temperature Annealing on the Structural and Electrical Properties of Zn1-XNiXO(0≤X≤0.15) Powders

Hakan Colak

材料科学技术(英)

This paper reported the synthesis, crystal structure and electrical conductivity properties of Ni-doped ZnO powders (i.e. Zn1-XNiXObinary system, X=0, 0.0025, 0.005, 0.0075 and in the range 0.01≤X≤0.15). I-phase samples, which were indexed as single phase with a hexagonal (wurtzite) structure in the Zn1-XNiXObinary system, were determined by X-ray diffraction (XRD). The widest range of the I-phase was determined as 0≤X≤0.03 at 1200°C; above this range the mixed phase was observed. The impurity phase was determined as NiO when compared with standard XRD data, using the PDF program. We focused on single I-phase ZnO samples which were synthesized at 1200°C because of the widest range of solubility limit at this temperature. It was observed that the lattice parameters a and c of the I-phase decreased with Ni doping concentration. The morphology of the I-phase samples was analyzed with a scanning electron microscope. The electrical conductivity of the pure ZnO and single I-phase samples were studied by using the four-probe dc method at temperatures between 100 and 950°C in air atmosphere. The electrical conductivity values of pure ZnO and 3 mol% Ni-doped ZnO samples at 100°C were 2×10-6 and 4.8×10-6Ω-1?cm-1, and at 950°C they were 1.8 and 3.6Ω-1?cm-1, respectively. In other words, electrical conductivity increased with Ni doping concentration.

关键词: II-VI semiconductors

Synthesis, Crystal Structural and Electrical Conductivity Properties of Fe-Doped Zinc Oxide Powders at High Temperatures

Hakan Colak

材料科学技术(英)

The synthesis, crystal structure and electrical conductivity properties of Fe-doped ZnO powders (in the range of 0.25-15 mol%) were reported in this paper. I-phase samples, which were indexed as single phase with a hexagonal (wurtzite) structure in the Fe-doped ZnO binary system, were determined by X-ray diffraction (XRD). The solubility limit of Fe in the ZnO lattice is 3 mol% at 950 °C. The above mixed phase was observed. And the impurity phase was determined as the cubic-ZnFe2O4 phase when compared with standard XRD data using the PDF program. This study focused on single I-phase ZnO samples which were synthesized at 950 °C because the limit of the solubility range is the widest at this temperature. The lattice parameters a and c of
the I-phase decreased with Fe-doping concentration. The morphology of the I-phase samples was analyzed with a scanning electron microscope. The grain size of the I-phase samples increased with heat treatment and doping concentration. The electrical conductivity of the pure ZnO and single I-phase samples was investigated using the four-probe dc method at 100{950 °C in air atmosphere. The electrical conductivity values of pure ZnO, 0.25 and 3 mol% Fe-doped ZnO samples at 100 °C were 2×10-6, 1.7×10-3 and 6.3×10-4 S?cm-1, and at 950 °C they were 3.4, 8.5 and 4 S?cm-1, respectively.

关键词: II-VI semiconductors

出版年份

刊物分类

相关作者

相关热词